Friday, March 17, 2006

Hypoxia progressively lowers thermal gaping thresholds in bearded dragons, Pogona vitticeps

Glenn J. Tattersall* and Rebecca M. Gerlach
Department of Biological Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
Correspondence: * Author for correspondence (e-mail: gtatters@brocku.ca
'//-->
)
Accepted for publication 30 June 2005.
Most animals, including reptiles, lower body temperature (Tb) under hypoxic conditions. Numerous physiological and behavioural traits significant to the regulation of Tb are altered by hypoxia in ways that suggest an orchestrated adjustment of Tb at a new and lower regulated level. We examined this matter in bearded dragons, Pogona vitticeps, a species of reptile that naturally exhibits open mouth gaping at high temperatures, presumably in order to promote evaporation and thus prevent or avoid further increases in Tb. The threshold for the onset of gaping (assessed as the temperature at which lizards spent 50% of their time gaping) was reduced from 36.9°C in normoxia to 35.5°C at 10% and 34.3°C at 6% O2. The overall magnitude or degree of gaping, measured qualitatively, was more pronounced at lower temperatures in hypoxia. Females consistently had lower gaping threshold temperatures than did males, and this difference was retained throughout exposure to hypoxia. In addition to gaping, evaporative water loss from the cloaca may also play a significant role in temperature regulation, since the ambient temperature at which cloacal discharge occurred was also reduced significantly in hypoxia. The results reported herein strongly support the view that hypoxia reduces temperature set-point in lizards and that such changes are coordinated by specific behavioural thermoeffectors that modulate evaporative water loss and thus facilitate a high potential for controlling or modifying Tb

Aerobic salivary bacteria in wild and captive Komodo dragons

JM Montgomery, D Gillespie, P Sastrawan, TM Fredeking, and GL Stewart
ABSTRACT
During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.